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Seismic Performance Factors for
Composite Frames

NEESR-II: System Behavior Factors for Composite
and Mixed Structural Systems

FEMA P695 - Quantification of Building Seismic
Performance Factors

Composite
Column

~

Seismic Performance Factors:
— (2, = Overstrength factor

— R = Seismic Response Factor Steel Girders

— C, = Deflection Amplification Factor

Two seismic force resisting systems as defined in
the AISC Seismic Specification

— Composite Special Moment Frames (C-SMF) using RCFT or
SRC columns and steel beams

— Composite Special Concentrically Braced Frames (C-SCBF)
using CCFT column and steel beams and braces
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Selection and Design of

Archetype Frames
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Selected Frames
Design Design Conc.

Gravity Seismic | Strength RCFT RCFT SRC RCFT-Cd CCFT CCFT
Load Load o) 3 Stories 9 Stories 3 Stories 3 Stories 3 Stories 9 Stories
High 20 D, . 4 ksi 1 v v v v v v
High 20 D pox 12 ksi 2 v v v
High 20 D, 4 ksi 3 v v v v v v
High 20 Dpin 12 ksi 4 v v v
High 30’ D, . 4 ksi 5 v v v v
High 30’ D pox 12 ksi 6 v v
High 30’ D, 4 ksi 7 v v v v
High 30’ Dpin 12 ksi 8 v v
Low 20 D, . 4 ksi 9 v v v v v v
Low 20 D, . 12 ksi 10 v v v
Low 20 D, 4 ksi 11 v v v v v v
Low 20 Dpnin 12 ksi 12 v v v
Low 30’ (D 4 ksi 13 v v v v
Low 30’ (D 12 ksi 14 v v
Low 30’ Dpnin 4 ksi 15 v v v v
Low 30’ D 12 ksi 16 v v

min



Mixed Beam-Column Element

Mixed formulation with both
displacement and force shape
functions

Total-Lagrangian corotational
formulation

Distributed plasticity fiber Shape Functions

formulation: stress and strain ; ;

modeled explicitly at each fiber

[EEN

of cross section

Perfect composite action
assumed (i.e., slip neglected)

Implemented in the OpenSees
framework
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Stress (ksi)

Uniaxial Cyclic Constitutive Relations

Steel Concrete

* Based on the bounding- * Based on the rule-based
surface plasticity model of model of Chang and Mander
Shen et al. (1995) (1994)

Tsai’s equation used for the
monotonic backbone curve

* The confinement defined
separately for each cross
section

 Modifications were made to
model the effects of local
buckling and cold-forming
process
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Lateral Load (kN)
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RCFT Beam-Column Validation
Varma 2000
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Hollow core jack

Clevis & pin

Hydraulic ram

Axial tension rods

Tie-down beam

Concrete block

Steel plate
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Lateral Load (kN)

SRC Beam-Column Validation
Ricles and Paboojian 1994
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Wide Flange Steel Beam Formulation

Local buckling strain
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Lateral Load (kN)

WF Cyclic Local Buckling Calibration
Tsai and Popov 1988
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Connection Regions in Special
Moment Frames

=] =t 1
a F Nonlinear
Column Zero Length Spring
Element Representing the
1 R o Panel Zone Shear
Rigid Links v Behavior
/ ® e
Nonlinear /
oniinea Elastic
Beam
Beam
_ , Element
Nonlinear stress-resultant-space multi-surface Element
kinematic hardening model used for rotational
spring formulation (after Muhummud 2003)




Connection Regions in Special
Concentrically Braced Frames

Nonlinear Moment
Column  ~ Release

Element
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Rigid
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Nonlinear
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Modeling assumptions established
by Hsiao et al. (2012)



Lateral Load (kN)

Subassemblage Validation
Ricles, Peng, and Lu 2004
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Evaluation of
Seismic Performance Factors

Archetype frames are categorized into performance
groups based on basic structural characteristics

Group Gra?/?tSIgLr;a d Sei?:\?;gLr:)a d Period Number of Number of
Number y Domain C-SMFs C-SCBFs
Level Level

PG-1 High D, ox Short 6 4
PG-2 High D, o Long 2 2
PG-3 High D, Short 6 4
PG-4 High D, Long 2 2
PG-5 Low D, o Short 6 4
PG-6 Low D Long 2 2
PG-7 Low D, Short 6 4
PG-8 Low D.. Long 2 2



Evaluation of

Seismic Performance Factors
Gravity Load, Mass, Damping

T oese | A

1.4D
1.2D+1.6L+0.51L,
Gravity Load 12D+05L+1.6L 105020502018
etc., including live load reduction
(Section 2.3, ASCE 7-10) (FEMA P695)
D + 25% storage live load
+ 10 psf for partitions Same as for design

(Section 12.7.2, ASCE 7-10)

* Rayleigh damping defined equal to 2.5% of critical in the 1%t and 379 mode
* Modeling does not include:

— Fracture

— Connection degradation

— Lateral torsional buckling



Typical Static Pushover Analysis

Base Shear (kips)

1000

900

800

700

600

500

400

300

200

100

0

[ I

I I I

[

Roof Displacement (in)
SFRS: C-SMF, Frame: RCFT-3-1

. V__=879.3 kips ]
max
Vg, = 7034 kips
£
i~ |
S
Lo
Il |
003
V = 153.9 kips B
[ [ [ [ [
20 30 40 50 60



Typical Dynamic Time History Analyses:
Incremental Dynamic Analysis
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System Overstrength Factor, (2,

* By the FEMA P695 methodology, Q,
should be taken as the largest
average value of Q from any

performance group S

— Rounded to nearest 0.5 PG-1 3.9 21

— Upper limits of 1.5R and 3.0 PG-2 5.3 1.9

* High overstrength for C-SMFs PG-3 7.6 2.8

— Displacement controlled design PG-4 9.9 2.7

— Current value (Q_ = 3.0) is upper limit PG-5 6.2 1.8

and is acceptable PG-6 55 17

e Overstrength for C-SCBFs near . - 2
current value (Q, = 2.0)

PG-8 6.5 2.2

— Higher for PG-3 and PG-4 (High gravity
load, SDC D

min)



Response Modification Factor, R

By the FEMA P695 methodology,

the R factor assumed in the design - || A

of the frames is acceptable if:

* the probability of collapse for Collapse margin ratio CMR =S /Sy
maximum considered
earthquake ground motions is Spectral shape factor SSF = f(T,SDC, 1)
less than 20% for each frame -

ACMR = SSF CMR

margin ratio

ACMR. > ACMR,,

Total system collapse
uncertainty

:Btotal - \/IBF\%TR +:B|§R +ﬁT2D +:B|\2/|DL
* and less than 10% on average
across a performance group. Acceptable value of ACMR,, = f (X, o)

ACMR
mean( ACMR, ) > ACMR,,
I 0%
Quallty of Design _ Quality of Nonlinear Total System Collapse
Quality of Test Data Modeling Uncertainty for u, 23
B (Good) B (Good) B (Good) _
CSMF Por=0.2 Brp=0.2 Pp = 0.2 Protar = 0525
B (Good) B (Good) B (Good) _
C-SCBF Por=0.2 Brp=0.2 Prp = 0.2 Prota = 0525




Response Modification Factor, R

ACMR,,, = Acceptable value of the
Adjusted Collapse Margin Ratio for
10% collapse probability

Number

C-SMF  C-SCBF
ACMR 44, = 1.96 for both C-SMF and

PG-1 4.8 3.3
C-SCBF and are less than the ACMR e 3.7 5 3
shown for each performance group B—_ e £ q
in the table PG-4 35 54
ACMR values show correlation with PG-5 4.9 2.6
the overstrength PG-6 3.9 2.9
C-SMFs PG-7 7.1 3.8

— Current value (R = 8.0) is acceptable PG-8 6.9 3.7
C-SCBFs

— Current value (R =5.0) is acceptable



Detlection Amplification Factor, C,

By the FEMA P695 methodology, C, = R for these
systems

Would represent a minor change for C-SCBF
— Current values: C,=4.5,R=5.0
— Typically strength controlled design
Would represent a significant change for C-SMF
— Current values: C,=5.5,R=8.0
— Typically already displacement controlled design

Four C-SMF archetype frames designed with the
current C, value

— Lower overstrength with current C, (average 4.9 vs. 6.4
with C, = R)

— Acceptable performance with current C,



Conclusions

e Steel-concrete composite frames shown to exhibit
consistently excellent seismic behavior, with
significant ductility and generally good distribution of
deformation demands over the building height

* Current seismic performance factors for C-SMF and
C-SCBF found to be acceptable
— Significant overstrength in C-SMFs (stiffness-controlled)
* Further investigation of the need for and effects of

setting C, equal to R with current deformation limits
is warranted for C-SMF



